| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257 |
- /* This file is automatically rebuilt by the Cesium build process. */
- define(['exports', './when-e6985d2a', './Check-24cae389'], function (exports, when, Check) { 'use strict';
- /*
- I've wrapped Makoto Matsumoto and Takuji Nishimura's code in a namespace
- so it's better encapsulated. Now you can have multiple random number generators
- and they won't stomp all over eachother's state.
- If you want to use this as a substitute for Math.random(), use the random()
- method like so:
- var m = new MersenneTwister();
- var randomNumber = m.random();
- You can also call the other genrand_{foo}() methods on the instance.
- If you want to use a specific seed in order to get a repeatable random
- sequence, pass an integer into the constructor:
- var m = new MersenneTwister(123);
- and that will always produce the same random sequence.
- Sean McCullough (banksean@gmail.com)
- */
- /*
- A C-program for MT19937, with initialization improved 2002/1/26.
- Coded by Takuji Nishimura and Makoto Matsumoto.
- Before using, initialize the state by using init_genrand(seed)
- or init_by_array(init_key, key_length).
- */
- /**
- @license
- mersenne-twister.js - https://gist.github.com/banksean/300494
- Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
- All rights reserved.
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions
- are met:
- 1. Redistributions of source code must retain the above copyright
- notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
- 3. The names of its contributors may not be used to endorse or promote
- products derived from this software without specific prior written
- permission.
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
- CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
- EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
- PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
- PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
- LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
- NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
- /*
- Any feedback is very welcome.
- http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
- email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)
- */
- function MersenneTwister(seed) {
- if (seed == undefined) {
- seed = new Date().getTime();
- }
- /* Period parameters */
- this.N = 624;
- this.M = 397;
- this.MATRIX_A = 0x9908b0df; /* constant vector a */
- this.UPPER_MASK = 0x80000000; /* most significant w-r bits */
- this.LOWER_MASK = 0x7fffffff; /* least significant r bits */
- this.mt = new Array(this.N); /* the array for the state vector */
- this.mti=this.N+1; /* mti==N+1 means mt[N] is not initialized */
- this.init_genrand(seed);
- }
- /* initializes mt[N] with a seed */
- MersenneTwister.prototype.init_genrand = function(s) {
- this.mt[0] = s >>> 0;
- for (this.mti=1; this.mti<this.N; this.mti++) {
- var s = this.mt[this.mti-1] ^ (this.mt[this.mti-1] >>> 30);
- this.mt[this.mti] = (((((s & 0xffff0000) >>> 16) * 1812433253) << 16) + (s & 0x0000ffff) * 1812433253)
- + this.mti;
- /* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */
- /* In the previous versions, MSBs of the seed affect */
- /* only MSBs of the array mt[]. */
- /* 2002/01/09 modified by Makoto Matsumoto */
- this.mt[this.mti] >>>= 0;
- /* for >32 bit machines */
- }
- };
- /* initialize by an array with array-length */
- /* init_key is the array for initializing keys */
- /* key_length is its length */
- /* slight change for C++, 2004/2/26 */
- //MersenneTwister.prototype.init_by_array = function(init_key, key_length) {
- // var i, j, k;
- // this.init_genrand(19650218);
- // i=1; j=0;
- // k = (this.N>key_length ? this.N : key_length);
- // for (; k; k--) {
- // var s = this.mt[i-1] ^ (this.mt[i-1] >>> 30)
- // this.mt[i] = (this.mt[i] ^ (((((s & 0xffff0000) >>> 16) * 1664525) << 16) + ((s & 0x0000ffff) * 1664525)))
- // + init_key[j] + j; /* non linear */
- // this.mt[i] >>>= 0; /* for WORDSIZE > 32 machines */
- // i++; j++;
- // if (i>=this.N) { this.mt[0] = this.mt[this.N-1]; i=1; }
- // if (j>=key_length) j=0;
- // }
- // for (k=this.N-1; k; k--) {
- // var s = this.mt[i-1] ^ (this.mt[i-1] >>> 30);
- // this.mt[i] = (this.mt[i] ^ (((((s & 0xffff0000) >>> 16) * 1566083941) << 16) + (s & 0x0000ffff) * 1566083941))
- // - i; /* non linear */
- // this.mt[i] >>>= 0; /* for WORDSIZE > 32 machines */
- // i++;
- // if (i>=this.N) { this.mt[0] = this.mt[this.N-1]; i=1; }
- // }
- //
- // this.mt[0] = 0x80000000; /* MSB is 1; assuring non-zero initial array */
- //}
- /* generates a random number on [0,0xffffffff]-interval */
- MersenneTwister.prototype.genrand_int32 = function() {
- var y;
- var mag01 = new Array(0x0, this.MATRIX_A);
- /* mag01[x] = x * MATRIX_A for x=0,1 */
- if (this.mti >= this.N) { /* generate N words at one time */
- var kk;
- if (this.mti == this.N+1) /* if init_genrand() has not been called, */
- this.init_genrand(5489); /* a default initial seed is used */
- for (kk=0;kk<this.N-this.M;kk++) {
- y = (this.mt[kk]&this.UPPER_MASK)|(this.mt[kk+1]&this.LOWER_MASK);
- this.mt[kk] = this.mt[kk+this.M] ^ (y >>> 1) ^ mag01[y & 0x1];
- }
- for (;kk<this.N-1;kk++) {
- y = (this.mt[kk]&this.UPPER_MASK)|(this.mt[kk+1]&this.LOWER_MASK);
- this.mt[kk] = this.mt[kk+(this.M-this.N)] ^ (y >>> 1) ^ mag01[y & 0x1];
- }
- y = (this.mt[this.N-1]&this.UPPER_MASK)|(this.mt[0]&this.LOWER_MASK);
- this.mt[this.N-1] = this.mt[this.M-1] ^ (y >>> 1) ^ mag01[y & 0x1];
- this.mti = 0;
- }
- y = this.mt[this.mti++];
- /* Tempering */
- y ^= (y >>> 11);
- y ^= (y << 7) & 0x9d2c5680;
- y ^= (y << 15) & 0xefc60000;
- y ^= (y >>> 18);
- return y >>> 0;
- };
- /* generates a random number on [0,0x7fffffff]-interval */
- //MersenneTwister.prototype.genrand_int31 = function() {
- // return (this.genrand_int32()>>>1);
- //}
- /* generates a random number on [0,1]-real-interval */
- //MersenneTwister.prototype.genrand_real1 = function() {
- // return this.genrand_int32()*(1.0/4294967295.0);
- // /* divided by 2^32-1 */
- //}
- /* generates a random number on [0,1)-real-interval */
- MersenneTwister.prototype.random = function() {
- return this.genrand_int32()*(1.0/4294967296.0);
- /* divided by 2^32 */
- };
- /**
- * Math functions.
- *
- * @exports CesiumMath
- * @alias Math
- */
- var CesiumMath = {};
- /**
- * 0.1
- * @type {Number}
- * @constant
- */
- CesiumMath.EPSILON1 = 0.1;
- /**
- * 0.01
- * @type {Number}
- * @constant
- */
- CesiumMath.EPSILON2 = 0.01;
- /**
- * 0.001
- * @type {Number}
- * @constant
- */
- CesiumMath.EPSILON3 = 0.001;
- /**
- * 0.0001
- * @type {Number}
- * @constant
- */
- CesiumMath.EPSILON4 = 0.0001;
- /**
- * 0.00001
- * @type {Number}
- * @constant
- */
- CesiumMath.EPSILON5 = 0.00001;
- /**
- * 0.000001
- * @type {Number}
- * @constant
- */
- CesiumMath.EPSILON6 = 0.000001;
- /**
- * 0.0000001
- * @type {Number}
- * @constant
- */
- CesiumMath.EPSILON7 = 0.0000001;
- /**
- * 0.00000001
- * @type {Number}
- * @constant
- */
- CesiumMath.EPSILON8 = 0.00000001;
- /**
- * 0.000000001
- * @type {Number}
- * @constant
- */
- CesiumMath.EPSILON9 = 0.000000001;
- /**
- * 0.0000000001
- * @type {Number}
- * @constant
- */
- CesiumMath.EPSILON10 = 0.0000000001;
- /**
- * 0.00000000001
- * @type {Number}
- * @constant
- */
- CesiumMath.EPSILON11 = 0.00000000001;
- /**
- * 0.000000000001
- * @type {Number}
- * @constant
- */
- CesiumMath.EPSILON12 = 0.000000000001;
- /**
- * 0.0000000000001
- * @type {Number}
- * @constant
- */
- CesiumMath.EPSILON13 = 0.0000000000001;
- /**
- * 0.00000000000001
- * @type {Number}
- * @constant
- */
- CesiumMath.EPSILON14 = 0.00000000000001;
- /**
- * 0.000000000000001
- * @type {Number}
- * @constant
- */
- CesiumMath.EPSILON15 = 0.000000000000001;
- /**
- * 0.0000000000000001
- * @type {Number}
- * @constant
- */
- CesiumMath.EPSILON16 = 0.0000000000000001;
- /**
- * 0.00000000000000001
- * @type {Number}
- * @constant
- */
- CesiumMath.EPSILON17 = 0.00000000000000001;
- /**
- * 0.000000000000000001
- * @type {Number}
- * @constant
- */
- CesiumMath.EPSILON18 = 0.000000000000000001;
- /**
- * 0.0000000000000000001
- * @type {Number}
- * @constant
- */
- CesiumMath.EPSILON19 = 0.0000000000000000001;
- /**
- * 0.00000000000000000001
- * @type {Number}
- * @constant
- */
- CesiumMath.EPSILON20 = 0.00000000000000000001;
- /**
- * 0.000000000000000000001
- * @type {Number}
- * @constant
- */
- CesiumMath.EPSILON21 = 0.000000000000000000001;
- /**
- * The gravitational parameter of the Earth in meters cubed
- * per second squared as defined by the WGS84 model: 3.986004418e14
- * @type {Number}
- * @constant
- */
- CesiumMath.GRAVITATIONALPARAMETER = 3.986004418e14;
- /**
- * Radius of the sun in meters: 6.955e8
- * @type {Number}
- * @constant
- */
- CesiumMath.SOLAR_RADIUS = 6.955e8;
- /**
- * The mean radius of the moon, according to the "Report of the IAU/IAG Working Group on
- * Cartographic Coordinates and Rotational Elements of the Planets and satellites: 2000",
- * Celestial Mechanics 82: 83-110, 2002.
- * @type {Number}
- * @constant
- */
- CesiumMath.LUNAR_RADIUS = 1737400.0;
- /**
- * 64 * 1024
- * @type {Number}
- * @constant
- */
- CesiumMath.SIXTY_FOUR_KILOBYTES = 64 * 1024;
- /**
- * 4 * 1024 * 1024 * 1024
- * @type {Number}
- * @constant
- */
- CesiumMath.FOUR_GIGABYTES = 4 * 1024 * 1024 * 1024;
- /**
- * Returns the sign of the value; 1 if the value is positive, -1 if the value is
- * negative, or 0 if the value is 0.
- *
- * @function
- * @param {Number} value The value to return the sign of.
- * @returns {Number} The sign of value.
- */
- CesiumMath.sign = when.defaultValue(Math.sign, function sign(value) {
- value = +value; // coerce to number
- if (value === 0 || value !== value) {
- // zero or NaN
- return value;
- }
- return value > 0 ? 1 : -1;
- });
- /**
- * Returns 1.0 if the given value is positive or zero, and -1.0 if it is negative.
- * This is similar to {@link CesiumMath#sign} except that returns 1.0 instead of
- * 0.0 when the input value is 0.0.
- * @param {Number} value The value to return the sign of.
- * @returns {Number} The sign of value.
- */
- CesiumMath.signNotZero = function (value) {
- return value < 0.0 ? -1.0 : 1.0;
- };
- /**
- * Converts a scalar value in the range [-1.0, 1.0] to a SNORM in the range [0, rangeMaximum]
- * @param {Number} value The scalar value in the range [-1.0, 1.0]
- * @param {Number} [rangeMaximum=255] The maximum value in the mapped range, 255 by default.
- * @returns {Number} A SNORM value, where 0 maps to -1.0 and rangeMaximum maps to 1.0.
- *
- * @see CesiumMath.fromSNorm
- */
- CesiumMath.toSNorm = function (value, rangeMaximum) {
- rangeMaximum = when.defaultValue(rangeMaximum, 255);
- return Math.round(
- (CesiumMath.clamp(value, -1.0, 1.0) * 0.5 + 0.5) * rangeMaximum
- );
- };
- /**
- * Converts a SNORM value in the range [0, rangeMaximum] to a scalar in the range [-1.0, 1.0].
- * @param {Number} value SNORM value in the range [0, rangeMaximum]
- * @param {Number} [rangeMaximum=255] The maximum value in the SNORM range, 255 by default.
- * @returns {Number} Scalar in the range [-1.0, 1.0].
- *
- * @see CesiumMath.toSNorm
- */
- CesiumMath.fromSNorm = function (value, rangeMaximum) {
- rangeMaximum = when.defaultValue(rangeMaximum, 255);
- return (
- (CesiumMath.clamp(value, 0.0, rangeMaximum) / rangeMaximum) * 2.0 - 1.0
- );
- };
- /**
- * Converts a scalar value in the range [rangeMinimum, rangeMaximum] to a scalar in the range [0.0, 1.0]
- * @param {Number} value The scalar value in the range [rangeMinimum, rangeMaximum]
- * @param {Number} rangeMinimum The minimum value in the mapped range.
- * @param {Number} rangeMaximum The maximum value in the mapped range.
- * @returns {Number} A scalar value, where rangeMinimum maps to 0.0 and rangeMaximum maps to 1.0.
- */
- CesiumMath.normalize = function (value, rangeMinimum, rangeMaximum) {
- rangeMaximum = Math.max(rangeMaximum - rangeMinimum, 0.0);
- return rangeMaximum === 0.0
- ? 0.0
- : CesiumMath.clamp((value - rangeMinimum) / rangeMaximum, 0.0, 1.0);
- };
- /**
- * Returns the hyperbolic sine of a number.
- * The hyperbolic sine of <em>value</em> is defined to be
- * (<em>e<sup>x</sup> - e<sup>-x</sup></em>)/2.0
- * where <i>e</i> is Euler's number, approximately 2.71828183.
- *
- * <p>Special cases:
- * <ul>
- * <li>If the argument is NaN, then the result is NaN.</li>
- *
- * <li>If the argument is infinite, then the result is an infinity
- * with the same sign as the argument.</li>
- *
- * <li>If the argument is zero, then the result is a zero with the
- * same sign as the argument.</li>
- * </ul>
- *</p>
- *
- * @function
- * @param {Number} value The number whose hyperbolic sine is to be returned.
- * @returns {Number} The hyperbolic sine of <code>value</code>.
- */
- CesiumMath.sinh = when.defaultValue(Math.sinh, function sinh(value) {
- return (Math.exp(value) - Math.exp(-value)) / 2.0;
- });
- /**
- * Returns the hyperbolic cosine of a number.
- * The hyperbolic cosine of <strong>value</strong> is defined to be
- * (<em>e<sup>x</sup> + e<sup>-x</sup></em>)/2.0
- * where <i>e</i> is Euler's number, approximately 2.71828183.
- *
- * <p>Special cases:
- * <ul>
- * <li>If the argument is NaN, then the result is NaN.</li>
- *
- * <li>If the argument is infinite, then the result is positive infinity.</li>
- *
- * <li>If the argument is zero, then the result is 1.0.</li>
- * </ul>
- *</p>
- *
- * @function
- * @param {Number} value The number whose hyperbolic cosine is to be returned.
- * @returns {Number} The hyperbolic cosine of <code>value</code>.
- */
- CesiumMath.cosh = when.defaultValue(Math.cosh, function cosh(value) {
- return (Math.exp(value) + Math.exp(-value)) / 2.0;
- });
- /**
- * Computes the linear interpolation of two values.
- *
- * @param {Number} p The start value to interpolate.
- * @param {Number} q The end value to interpolate.
- * @param {Number} time The time of interpolation generally in the range <code>[0.0, 1.0]</code>.
- * @returns {Number} The linearly interpolated value.
- *
- * @example
- * var n = Cesium.Math.lerp(0.0, 2.0, 0.5); // returns 1.0
- */
- CesiumMath.lerp = function (p, q, time) {
- return (1.0 - time) * p + time * q;
- };
- /**
- * pi
- *
- * @type {Number}
- * @constant
- */
- CesiumMath.PI = Math.PI;
- /**
- * 1/pi
- *
- * @type {Number}
- * @constant
- */
- CesiumMath.ONE_OVER_PI = 1.0 / Math.PI;
- /**
- * pi/2
- *
- * @type {Number}
- * @constant
- */
- CesiumMath.PI_OVER_TWO = Math.PI / 2.0;
- /**
- * pi/3
- *
- * @type {Number}
- * @constant
- */
- CesiumMath.PI_OVER_THREE = Math.PI / 3.0;
- /**
- * pi/4
- *
- * @type {Number}
- * @constant
- */
- CesiumMath.PI_OVER_FOUR = Math.PI / 4.0;
- /**
- * pi/6
- *
- * @type {Number}
- * @constant
- */
- CesiumMath.PI_OVER_SIX = Math.PI / 6.0;
- /**
- * 3pi/2
- *
- * @type {Number}
- * @constant
- */
- CesiumMath.THREE_PI_OVER_TWO = (3.0 * Math.PI) / 2.0;
- /**
- * 2pi
- *
- * @type {Number}
- * @constant
- */
- CesiumMath.TWO_PI = 2.0 * Math.PI;
- /**
- * 1/2pi
- *
- * @type {Number}
- * @constant
- */
- CesiumMath.ONE_OVER_TWO_PI = 1.0 / (2.0 * Math.PI);
- /**
- * The number of radians in a degree.
- *
- * @type {Number}
- * @constant
- */
- CesiumMath.RADIANS_PER_DEGREE = Math.PI / 180.0;
- /**
- * The number of degrees in a radian.
- *
- * @type {Number}
- * @constant
- */
- CesiumMath.DEGREES_PER_RADIAN = 180.0 / Math.PI;
- /**
- * The number of radians in an arc second.
- *
- * @type {Number}
- * @constant
- */
- CesiumMath.RADIANS_PER_ARCSECOND = CesiumMath.RADIANS_PER_DEGREE / 3600.0;
- /**
- * Converts degrees to radians.
- * @param {Number} degrees The angle to convert in degrees.
- * @returns {Number} The corresponding angle in radians.
- */
- CesiumMath.toRadians = function (degrees) {
- //>>includeStart('debug', pragmas.debug);
- if (!when.defined(degrees)) {
- throw new Check.DeveloperError("degrees is required.");
- }
- //>>includeEnd('debug');
- return degrees * CesiumMath.RADIANS_PER_DEGREE;
- };
- /**
- * Converts radians to degrees.
- * @param {Number} radians The angle to convert in radians.
- * @returns {Number} The corresponding angle in degrees.
- */
- CesiumMath.toDegrees = function (radians) {
- //>>includeStart('debug', pragmas.debug);
- if (!when.defined(radians)) {
- throw new Check.DeveloperError("radians is required.");
- }
- //>>includeEnd('debug');
- return radians * CesiumMath.DEGREES_PER_RADIAN;
- };
- /**
- * Converts a longitude value, in radians, to the range [<code>-Math.PI</code>, <code>Math.PI</code>).
- *
- * @param {Number} angle The longitude value, in radians, to convert to the range [<code>-Math.PI</code>, <code>Math.PI</code>).
- * @returns {Number} The equivalent longitude value in the range [<code>-Math.PI</code>, <code>Math.PI</code>).
- *
- * @example
- * // Convert 270 degrees to -90 degrees longitude
- * var longitude = Cesium.Math.convertLongitudeRange(Cesium.Math.toRadians(270.0));
- */
- CesiumMath.convertLongitudeRange = function (angle) {
- //>>includeStart('debug', pragmas.debug);
- if (!when.defined(angle)) {
- throw new Check.DeveloperError("angle is required.");
- }
- //>>includeEnd('debug');
- var twoPi = CesiumMath.TWO_PI;
- var simplified = angle - Math.floor(angle / twoPi) * twoPi;
- if (simplified < -Math.PI) {
- return simplified + twoPi;
- }
- if (simplified >= Math.PI) {
- return simplified - twoPi;
- }
- return simplified;
- };
- /**
- * Convenience function that clamps a latitude value, in radians, to the range [<code>-Math.PI/2</code>, <code>Math.PI/2</code>).
- * Useful for sanitizing data before use in objects requiring correct range.
- *
- * @param {Number} angle The latitude value, in radians, to clamp to the range [<code>-Math.PI/2</code>, <code>Math.PI/2</code>).
- * @returns {Number} The latitude value clamped to the range [<code>-Math.PI/2</code>, <code>Math.PI/2</code>).
- *
- * @example
- * // Clamp 108 degrees latitude to 90 degrees latitude
- * var latitude = Cesium.Math.clampToLatitudeRange(Cesium.Math.toRadians(108.0));
- */
- CesiumMath.clampToLatitudeRange = function (angle) {
- //>>includeStart('debug', pragmas.debug);
- if (!when.defined(angle)) {
- throw new Check.DeveloperError("angle is required.");
- }
- //>>includeEnd('debug');
- return CesiumMath.clamp(
- angle,
- -1 * CesiumMath.PI_OVER_TWO,
- CesiumMath.PI_OVER_TWO
- );
- };
- /**
- * Produces an angle in the range -Pi <= angle <= Pi which is equivalent to the provided angle.
- *
- * @param {Number} angle in radians
- * @returns {Number} The angle in the range [<code>-CesiumMath.PI</code>, <code>CesiumMath.PI</code>].
- */
- CesiumMath.negativePiToPi = function (angle) {
- //>>includeStart('debug', pragmas.debug);
- if (!when.defined(angle)) {
- throw new Check.DeveloperError("angle is required.");
- }
- //>>includeEnd('debug');
- return CesiumMath.zeroToTwoPi(angle + CesiumMath.PI) - CesiumMath.PI;
- };
- /**
- * Produces an angle in the range 0 <= angle <= 2Pi which is equivalent to the provided angle.
- *
- * @param {Number} angle in radians
- * @returns {Number} The angle in the range [0, <code>CesiumMath.TWO_PI</code>].
- */
- CesiumMath.zeroToTwoPi = function (angle) {
- //>>includeStart('debug', pragmas.debug);
- if (!when.defined(angle)) {
- throw new Check.DeveloperError("angle is required.");
- }
- //>>includeEnd('debug');
- var mod = CesiumMath.mod(angle, CesiumMath.TWO_PI);
- if (
- Math.abs(mod) < CesiumMath.EPSILON14 &&
- Math.abs(angle) > CesiumMath.EPSILON14
- ) {
- return CesiumMath.TWO_PI;
- }
- return mod;
- };
- /**
- * The modulo operation that also works for negative dividends.
- *
- * @param {Number} m The dividend.
- * @param {Number} n The divisor.
- * @returns {Number} The remainder.
- */
- CesiumMath.mod = function (m, n) {
- //>>includeStart('debug', pragmas.debug);
- if (!when.defined(m)) {
- throw new Check.DeveloperError("m is required.");
- }
- if (!when.defined(n)) {
- throw new Check.DeveloperError("n is required.");
- }
- //>>includeEnd('debug');
- return ((m % n) + n) % n;
- };
- /**
- * Determines if two values are equal using an absolute or relative tolerance test. This is useful
- * to avoid problems due to roundoff error when comparing floating-point values directly. The values are
- * first compared using an absolute tolerance test. If that fails, a relative tolerance test is performed.
- * Use this test if you are unsure of the magnitudes of left and right.
- *
- * @param {Number} left The first value to compare.
- * @param {Number} right The other value to compare.
- * @param {Number} [relativeEpsilon=0] The maximum inclusive delta between <code>left</code> and <code>right</code> for the relative tolerance test.
- * @param {Number} [absoluteEpsilon=relativeEpsilon] The maximum inclusive delta between <code>left</code> and <code>right</code> for the absolute tolerance test.
- * @returns {Boolean} <code>true</code> if the values are equal within the epsilon; otherwise, <code>false</code>.
- *
- * @example
- * var a = Cesium.Math.equalsEpsilon(0.0, 0.01, Cesium.Math.EPSILON2); // true
- * var b = Cesium.Math.equalsEpsilon(0.0, 0.1, Cesium.Math.EPSILON2); // false
- * var c = Cesium.Math.equalsEpsilon(3699175.1634344, 3699175.2, Cesium.Math.EPSILON7); // true
- * var d = Cesium.Math.equalsEpsilon(3699175.1634344, 3699175.2, Cesium.Math.EPSILON9); // false
- */
- CesiumMath.equalsEpsilon = function (
- left,
- right,
- relativeEpsilon,
- absoluteEpsilon
- ) {
- //>>includeStart('debug', pragmas.debug);
- if (!when.defined(left)) {
- throw new Check.DeveloperError("left is required.");
- }
- if (!when.defined(right)) {
- throw new Check.DeveloperError("right is required.");
- }
- //>>includeEnd('debug');
- relativeEpsilon = when.defaultValue(relativeEpsilon, 0.0);
- absoluteEpsilon = when.defaultValue(absoluteEpsilon, relativeEpsilon);
- var absDiff = Math.abs(left - right);
- return (
- absDiff <= absoluteEpsilon ||
- absDiff <= relativeEpsilon * Math.max(Math.abs(left), Math.abs(right))
- );
- };
- /**
- * Determines if the left value is less than the right value. If the two values are within
- * <code>absoluteEpsilon</code> of each other, they are considered equal and this function returns false.
- *
- * @param {Number} left The first number to compare.
- * @param {Number} right The second number to compare.
- * @param {Number} absoluteEpsilon The absolute epsilon to use in comparison.
- * @returns {Boolean} <code>true</code> if <code>left</code> is less than <code>right</code> by more than
- * <code>absoluteEpsilon<code>. <code>false</code> if <code>left</code> is greater or if the two
- * values are nearly equal.
- */
- CesiumMath.lessThan = function (left, right, absoluteEpsilon) {
- //>>includeStart('debug', pragmas.debug);
- if (!when.defined(left)) {
- throw new Check.DeveloperError("first is required.");
- }
- if (!when.defined(right)) {
- throw new Check.DeveloperError("second is required.");
- }
- if (!when.defined(absoluteEpsilon)) {
- throw new Check.DeveloperError("relativeEpsilon is required.");
- }
- //>>includeEnd('debug');
- return left - right < -absoluteEpsilon;
- };
- /**
- * Determines if the left value is less than or equal to the right value. If the two values are within
- * <code>absoluteEpsilon</code> of each other, they are considered equal and this function returns true.
- *
- * @param {Number} left The first number to compare.
- * @param {Number} right The second number to compare.
- * @param {Number} absoluteEpsilon The absolute epsilon to use in comparison.
- * @returns {Boolean} <code>true</code> if <code>left</code> is less than <code>right</code> or if the
- * the values are nearly equal.
- */
- CesiumMath.lessThanOrEquals = function (left, right, absoluteEpsilon) {
- //>>includeStart('debug', pragmas.debug);
- if (!when.defined(left)) {
- throw new Check.DeveloperError("first is required.");
- }
- if (!when.defined(right)) {
- throw new Check.DeveloperError("second is required.");
- }
- if (!when.defined(absoluteEpsilon)) {
- throw new Check.DeveloperError("relativeEpsilon is required.");
- }
- //>>includeEnd('debug');
- return left - right < absoluteEpsilon;
- };
- /**
- * Determines if the left value is greater the right value. If the two values are within
- * <code>absoluteEpsilon</code> of each other, they are considered equal and this function returns false.
- *
- * @param {Number} left The first number to compare.
- * @param {Number} right The second number to compare.
- * @param {Number} absoluteEpsilon The absolute epsilon to use in comparison.
- * @returns {Boolean} <code>true</code> if <code>left</code> is greater than <code>right</code> by more than
- * <code>absoluteEpsilon<code>. <code>false</code> if <code>left</code> is less or if the two
- * values are nearly equal.
- */
- CesiumMath.greaterThan = function (left, right, absoluteEpsilon) {
- //>>includeStart('debug', pragmas.debug);
- if (!when.defined(left)) {
- throw new Check.DeveloperError("first is required.");
- }
- if (!when.defined(right)) {
- throw new Check.DeveloperError("second is required.");
- }
- if (!when.defined(absoluteEpsilon)) {
- throw new Check.DeveloperError("relativeEpsilon is required.");
- }
- //>>includeEnd('debug');
- return left - right > absoluteEpsilon;
- };
- /**
- * Determines if the left value is greater than or equal to the right value. If the two values are within
- * <code>absoluteEpsilon</code> of each other, they are considered equal and this function returns true.
- *
- * @param {Number} left The first number to compare.
- * @param {Number} right The second number to compare.
- * @param {Number} absoluteEpsilon The absolute epsilon to use in comparison.
- * @returns {Boolean} <code>true</code> if <code>left</code> is greater than <code>right</code> or if the
- * the values are nearly equal.
- */
- CesiumMath.greaterThanOrEquals = function (left, right, absoluteEpsilon) {
- //>>includeStart('debug', pragmas.debug);
- if (!when.defined(left)) {
- throw new Check.DeveloperError("first is required.");
- }
- if (!when.defined(right)) {
- throw new Check.DeveloperError("second is required.");
- }
- if (!when.defined(absoluteEpsilon)) {
- throw new Check.DeveloperError("relativeEpsilon is required.");
- }
- //>>includeEnd('debug');
- return left - right > -absoluteEpsilon;
- };
- var factorials = [1];
- /**
- * Computes the factorial of the provided number.
- *
- * @param {Number} n The number whose factorial is to be computed.
- * @returns {Number} The factorial of the provided number or undefined if the number is less than 0.
- *
- * @exception {DeveloperError} A number greater than or equal to 0 is required.
- *
- *
- * @example
- * //Compute 7!, which is equal to 5040
- * var computedFactorial = Cesium.Math.factorial(7);
- *
- * @see {@link http://en.wikipedia.org/wiki/Factorial|Factorial on Wikipedia}
- */
- CesiumMath.factorial = function (n) {
- //>>includeStart('debug', pragmas.debug);
- if (typeof n !== "number" || n < 0) {
- throw new Check.DeveloperError(
- "A number greater than or equal to 0 is required."
- );
- }
- //>>includeEnd('debug');
- var length = factorials.length;
- if (n >= length) {
- var sum = factorials[length - 1];
- for (var i = length; i <= n; i++) {
- var next = sum * i;
- factorials.push(next);
- sum = next;
- }
- }
- return factorials[n];
- };
- /**
- * Increments a number with a wrapping to a minimum value if the number exceeds the maximum value.
- *
- * @param {Number} [n] The number to be incremented.
- * @param {Number} [maximumValue] The maximum incremented value before rolling over to the minimum value.
- * @param {Number} [minimumValue=0.0] The number reset to after the maximum value has been exceeded.
- * @returns {Number} The incremented number.
- *
- * @exception {DeveloperError} Maximum value must be greater than minimum value.
- *
- * @example
- * var n = Cesium.Math.incrementWrap(5, 10, 0); // returns 6
- * var n = Cesium.Math.incrementWrap(10, 10, 0); // returns 0
- */
- CesiumMath.incrementWrap = function (n, maximumValue, minimumValue) {
- minimumValue = when.defaultValue(minimumValue, 0.0);
- //>>includeStart('debug', pragmas.debug);
- if (!when.defined(n)) {
- throw new Check.DeveloperError("n is required.");
- }
- if (maximumValue <= minimumValue) {
- throw new Check.DeveloperError("maximumValue must be greater than minimumValue.");
- }
- //>>includeEnd('debug');
- ++n;
- if (n > maximumValue) {
- n = minimumValue;
- }
- return n;
- };
- /**
- * Determines if a positive integer is a power of two.
- *
- * @param {Number} n The positive integer to test.
- * @returns {Boolean} <code>true</code> if the number if a power of two; otherwise, <code>false</code>.
- *
- * @exception {DeveloperError} A number greater than or equal to 0 is required.
- *
- * @example
- * var t = Cesium.Math.isPowerOfTwo(16); // true
- * var f = Cesium.Math.isPowerOfTwo(20); // false
- */
- CesiumMath.isPowerOfTwo = function (n) {
- //>>includeStart('debug', pragmas.debug);
- if (typeof n !== "number" || n < 0) {
- throw new Check.DeveloperError(
- "A number greater than or equal to 0 is required."
- );
- }
- //>>includeEnd('debug');
- return n !== 0 && (n & (n - 1)) === 0;
- };
- /**
- * Computes the next power-of-two integer greater than or equal to the provided positive integer.
- *
- * @param {Number} n The positive integer to test.
- * @returns {Number} The next power-of-two integer.
- *
- * @exception {DeveloperError} A number greater than or equal to 0 is required.
- *
- * @example
- * var n = Cesium.Math.nextPowerOfTwo(29); // 32
- * var m = Cesium.Math.nextPowerOfTwo(32); // 32
- */
- CesiumMath.nextPowerOfTwo = function (n) {
- //>>includeStart('debug', pragmas.debug);
- if (typeof n !== "number" || n < 0) {
- throw new Check.DeveloperError(
- "A number greater than or equal to 0 is required."
- );
- }
- //>>includeEnd('debug');
- // From http://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2
- --n;
- n |= n >> 1;
- n |= n >> 2;
- n |= n >> 4;
- n |= n >> 8;
- n |= n >> 16;
- ++n;
- return n;
- };
- /**
- * Constraint a value to lie between two values.
- *
- * @param {Number} value The value to constrain.
- * @param {Number} min The minimum value.
- * @param {Number} max The maximum value.
- * @returns {Number} The value clamped so that min <= value <= max.
- */
- CesiumMath.clamp = function (value, min, max) {
- //>>includeStart('debug', pragmas.debug);
- if (!when.defined(value)) {
- throw new Check.DeveloperError("value is required");
- }
- if (!when.defined(min)) {
- throw new Check.DeveloperError("min is required.");
- }
- if (!when.defined(max)) {
- throw new Check.DeveloperError("max is required.");
- }
- //>>includeEnd('debug');
- return value < min ? min : value > max ? max : value;
- };
- var randomNumberGenerator = new MersenneTwister();
- /**
- * Sets the seed used by the random number generator
- * in {@link CesiumMath#nextRandomNumber}.
- *
- * @param {Number} seed An integer used as the seed.
- */
- CesiumMath.setRandomNumberSeed = function (seed) {
- //>>includeStart('debug', pragmas.debug);
- if (!when.defined(seed)) {
- throw new Check.DeveloperError("seed is required.");
- }
- //>>includeEnd('debug');
- randomNumberGenerator = new MersenneTwister(seed);
- };
- /**
- * Generates a random floating point number in the range of [0.0, 1.0)
- * using a Mersenne twister.
- *
- * @returns {Number} A random number in the range of [0.0, 1.0).
- *
- * @see CesiumMath.setRandomNumberSeed
- * @see {@link http://en.wikipedia.org/wiki/Mersenne_twister|Mersenne twister on Wikipedia}
- */
- CesiumMath.nextRandomNumber = function () {
- return randomNumberGenerator.random();
- };
- /**
- * Generates a random number between two numbers.
- *
- * @param {Number} min The minimum value.
- * @param {Number} max The maximum value.
- * @returns {Number} A random number between the min and max.
- */
- CesiumMath.randomBetween = function (min, max) {
- return CesiumMath.nextRandomNumber() * (max - min) + min;
- };
- /**
- * Computes <code>Math.acos(value)</code>, but first clamps <code>value</code> to the range [-1.0, 1.0]
- * so that the function will never return NaN.
- *
- * @param {Number} value The value for which to compute acos.
- * @returns {Number} The acos of the value if the value is in the range [-1.0, 1.0], or the acos of -1.0 or 1.0,
- * whichever is closer, if the value is outside the range.
- */
- CesiumMath.acosClamped = function (value) {
- //>>includeStart('debug', pragmas.debug);
- if (!when.defined(value)) {
- throw new Check.DeveloperError("value is required.");
- }
- //>>includeEnd('debug');
- return Math.acos(CesiumMath.clamp(value, -1.0, 1.0));
- };
- /**
- * Computes <code>Math.asin(value)</code>, but first clamps <code>value</code> to the range [-1.0, 1.0]
- * so that the function will never return NaN.
- *
- * @param {Number} value The value for which to compute asin.
- * @returns {Number} The asin of the value if the value is in the range [-1.0, 1.0], or the asin of -1.0 or 1.0,
- * whichever is closer, if the value is outside the range.
- */
- CesiumMath.asinClamped = function (value) {
- //>>includeStart('debug', pragmas.debug);
- if (!when.defined(value)) {
- throw new Check.DeveloperError("value is required.");
- }
- //>>includeEnd('debug');
- return Math.asin(CesiumMath.clamp(value, -1.0, 1.0));
- };
- /**
- * Finds the chord length between two points given the circle's radius and the angle between the points.
- *
- * @param {Number} angle The angle between the two points.
- * @param {Number} radius The radius of the circle.
- * @returns {Number} The chord length.
- */
- CesiumMath.chordLength = function (angle, radius) {
- //>>includeStart('debug', pragmas.debug);
- if (!when.defined(angle)) {
- throw new Check.DeveloperError("angle is required.");
- }
- if (!when.defined(radius)) {
- throw new Check.DeveloperError("radius is required.");
- }
- //>>includeEnd('debug');
- return 2.0 * radius * Math.sin(angle * 0.5);
- };
- /**
- * Finds the logarithm of a number to a base.
- *
- * @param {Number} number The number.
- * @param {Number} base The base.
- * @returns {Number} The result.
- */
- CesiumMath.logBase = function (number, base) {
- //>>includeStart('debug', pragmas.debug);
- if (!when.defined(number)) {
- throw new Check.DeveloperError("number is required.");
- }
- if (!when.defined(base)) {
- throw new Check.DeveloperError("base is required.");
- }
- //>>includeEnd('debug');
- return Math.log(number) / Math.log(base);
- };
- /**
- * Finds the cube root of a number.
- * Returns NaN if <code>number</code> is not provided.
- *
- * @function
- * @param {Number} [number] The number.
- * @returns {Number} The result.
- */
- CesiumMath.cbrt = when.defaultValue(Math.cbrt, function cbrt(number) {
- var result = Math.pow(Math.abs(number), 1.0 / 3.0);
- return number < 0.0 ? -result : result;
- });
- /**
- * Finds the base 2 logarithm of a number.
- *
- * @function
- * @param {Number} number The number.
- * @returns {Number} The result.
- */
- CesiumMath.log2 = when.defaultValue(Math.log2, function log2(number) {
- return Math.log(number) * Math.LOG2E;
- });
- /**
- * @private
- */
- CesiumMath.fog = function (distanceToCamera, density) {
- var scalar = distanceToCamera * density;
- return 1.0 - Math.exp(-(scalar * scalar));
- };
- /**
- * Computes a fast approximation of Atan for input in the range [-1, 1].
- *
- * Based on Michal Drobot's approximation from ShaderFastLibs,
- * which in turn is based on "Efficient approximations for the arctangent function,"
- * Rajan, S. Sichun Wang Inkol, R. Joyal, A., May 2006.
- * Adapted from ShaderFastLibs under MIT License.
- *
- * @param {Number} x An input number in the range [-1, 1]
- * @returns {Number} An approximation of atan(x)
- */
- CesiumMath.fastApproximateAtan = function (x) {
- //>>includeStart('debug', pragmas.debug);
- Check.Check.typeOf.number("x", x);
- //>>includeEnd('debug');
- return x * (-0.1784 * Math.abs(x) - 0.0663 * x * x + 1.0301);
- };
- /**
- * Computes a fast approximation of Atan2(x, y) for arbitrary input scalars.
- *
- * Range reduction math based on nvidia's cg reference implementation: http://developer.download.nvidia.com/cg/atan2.html
- *
- * @param {Number} x An input number that isn't zero if y is zero.
- * @param {Number} y An input number that isn't zero if x is zero.
- * @returns {Number} An approximation of atan2(x, y)
- */
- CesiumMath.fastApproximateAtan2 = function (x, y) {
- //>>includeStart('debug', pragmas.debug);
- Check.Check.typeOf.number("x", x);
- Check.Check.typeOf.number("y", y);
- //>>includeEnd('debug');
- // atan approximations are usually only reliable over [-1, 1]
- // So reduce the range by flipping whether x or y is on top based on which is bigger.
- var opposite;
- var adjacent;
- var t = Math.abs(x); // t used as swap and atan result.
- opposite = Math.abs(y);
- adjacent = Math.max(t, opposite);
- opposite = Math.min(t, opposite);
- var oppositeOverAdjacent = opposite / adjacent;
- //>>includeStart('debug', pragmas.debug);
- if (isNaN(oppositeOverAdjacent)) {
- throw new Check.DeveloperError("either x or y must be nonzero");
- }
- //>>includeEnd('debug');
- t = CesiumMath.fastApproximateAtan(oppositeOverAdjacent);
- // Undo range reduction
- t = Math.abs(y) > Math.abs(x) ? CesiumMath.PI_OVER_TWO - t : t;
- t = x < 0.0 ? CesiumMath.PI - t : t;
- t = y < 0.0 ? -t : t;
- return t;
- };
- exports.CesiumMath = CesiumMath;
- });
|